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Many important mathematical models in continuum mechanics lead to the study of nonlinear 
systems of differential equations with partial derivatives of the composite type. In such 
systems, different components of the sought vector-solution (such as velocity, density, pres- 
sure, saturation, temperature, etc.) satisfy equations of different types (parabolic, hyper- 
bolic, elliptic). The systems of equations are degenerate in the sense of their type or 
order for certain values of the sought solution or its derivatives. Here, the solutions them. 
selves have a finite time of localization (vanishing), a finite rate of propagation of per- 
turbations from the initial data, spatial localization with inertia (metastable), etc. The 
fact that the solutions of degenerate parabolic equations (equations of the type describing 
nonlinear heat conduction) are associated with a finite perturbation velocity was evidently 
first noted and studied in [i-3], while the same property was discovered and investigated 
for elliptic equations in [4] in connection with study of the problem of the discharge of 
a plane sonic jet. A large number of studies was subsequently devoted to examining these 
questions for a single parabolic equation. A fairly complete survey of these studies can 
be found in [5, 6]. Questions related to the localization of solutions which increase with- 
out limit during a finite time are now being actively investigated for quasilinear parabolic 
equations [7]. The results for one parabolic equation have generally been obtained on the 
basis of theorems which compare the test solution with an auxiliary solution, such as a simi- 
larity solution. Methods of this type generally cannot be used for systems of equations of 
the composite type. The authors of [8-10] proposed and substantiated an energy method of 
studying the character of perturbations described by the solutions of general equations of 
the elliptic, parabolic, and composite types. The method is based on deriving and studying 
ordinary differential inequalities for energy functions. The method was generalized and de- 
veloped in [11-18] to embrace higher-order equations. It has proven effective for investi- 
gating weak generalized solutions of systems of the composite type encountered in continuum 
mechanics. 

In [ii, 19-23], the energy method was used to establish the finite time of localization 
and finite rate of propagation of perturbations from initial data in several mathematical 
models of continuum mechanics (filtration flows of a two-phase liquid, combined flows of sur- 
face water and groundwater, flows of water in open channels, flows of incompressible nonuni- 
form viscoplastic media, unidimensional flows of viscous gas, etc.). It was shown in [21] 
that an axisymmetric jet moving along the symmetry axis at sonic velocity levels out (simi- 
lar to the plane case [4]) over a finite distance. 

Here, we establish the finite localization time and metastable localization (localiza- 
tion with inertia) of solutions for some of the above-mentioned models in the presence of 
"sources" - assigned right sides. It should be noted that we will not address questions re- 
lating to the existence of the corresponding solutions. We will study only their qualita- 
tive properties. 

i. Incompressible Nonuniform Non-Newtonian Fluids. The system of equations represen- 
ting the laws of conservation is of the composite type and can be written in the form [24-26] 

d t  - -  Ot - -  V l )  . a x  l '  ""  �9 . ,  Ox n ] 

d i v  v = O, v = (ul . . . .  , v,~); 

) P-~-dv ~---P -b'F + ( v . v ) v  = d i v P  + pf; 

(1.1) 

(1.2) 

(1.3) 
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P = - - p E  + Y(O), D = {O~j} = \ozj + Oxi] j' (1.4) 

x ~ ~ ~ B", t ~ (0, T), Q =  ~•  T). 

Here, ~(t, x), p(t, x), and p(t, x) are the sought velocity, density, and pressure in the 
fluid; P and D are the stress tensor and strain-rate tensor; E is the unit tensor; f~(t, x) 
is the prescribed body force - a "source." 

We will assume that the assigned symmetric tensor F, determining P, satisfies the condi- 
tion 

5 I D I q < ~ F : D  = YijDij, t < q ,  5 = c o n s t > O .  ( 1 . 5 )  

For the classical incompressible viscous fluid, P = -pE + 2gD, and, in (1.5), 6 = 2, q = 2. 

For viscoplastic fluids [25, 26], P = -pE + 2(~ + xlDl~ 0 ~ o < i and, using the 
Young inequality, we have (1.5) with 

8 = ~PI~176 - -  I) (~-1)/~ 
(1.6) 

q = {2/o + [(o + t ) (o  - t ) 1 , , o } ~ ( ~  + 1,2). 

Let us examine the following initial-boundary-value problem for w = (v, p, p) 

v(t, z) = O, (x, t) ~ 1' r = 0~2><(0, T); ( 1 . 7 )  

v(O, z)  = re(x), p(O, x) = 9o(z),  x ~ ~ .  ( 1 . 8 )  

I t  s h o u l d  be n o t e d  t h a t  f o r  p r o b l e m  ( 1 . 1 ) - ( 1 , 4 ) ,  ( 1 . 7 ) ,  ( 1 . 8 )  in  Eq. ( 1 . 5 )  w i t h  a = 0 
the author of [27] proved the theorem of the existence of the weak generalized solution w = 
(v, 9, p)e Vq, where Vq = {w: ~ L~(0, T; L=(fl)) n L2(0, T; W0~,q(~)), I/M ~ O ~ M, Pt e 
L2(0, T; W-I'2(~))} (q = 2), with allowance for the notation in [28]. For a uniform incom- 
pressible fluid [p(t, x) ~ const], theorems of the existence of the solution of system (i.!)- 
(1.4) for certain relations (1.5) were proven in [28, 29]. We will study qualitative proper- 
ties of the solutionsw ~ V~ of system (1.1)-(1.4), assuming that ~ is a finite region with 
a smooth boundary. Let condition (1.5) be satisfied. In this condition 

and, additionally, 

q ~ (2n/(2 + n), 2), n / >  2, (1,9) 

flvofx)il=,a ~ C,, -= const, t / J f  <~ Po ~ M; ( 1 . 1 0 )  

i!f (t, . ) t q ; ' q - - 1 ) . ~  p [4 t.Tl)~_'("--q), i ~, ~..~ ~ / ~  - -  ( 1 . ! ! )  

C 1 = c o n s t ,  u+ == max (O, u), T j ~ ( O ,  T). 

Theorem i.i (finite localization time). Let 
tion ~ p--~oblem (i.i)-(1.4), (1.7), (1.8) and let 
Then for any Tf e (0, T) there exist constants Cv, 
C such that 

w = (v, p, p)e Vq be the generalized solu- 
conditions (1.5), (1.9.)-(1.11) be satisfied. 
Cf (generally small relative to 6) and 

ill.,: < ( 1 . 1 2 )  

and, in particular, 

v(t, x) ~ - 0 ,  x ~ . Q ,  T / ~ t .  (i.13) 

Proof. Following the method of energy estimates [9, 11-13], we first prove the follow- 
ing equality for the solution w being examined: 

I dH_ (div P, *,% -4- ( p / . v ) , ~ : - - - ( / " :  D, 1)~ + ( p L  v ) ~ z ~ I ,  
"2 d l 

(1.14) P 

II (t) . (,,, (t, .) v (t, �9 ) , .  (t, �9 )),,, (~, ~,),, == J u,t,d:z' .  
.q 

The latter is formally obtained by multiplying Eq. (1.3) by v(t, x) and then integrating by 
parts with allowance for Eqs. (i.i), (1.2) and boundary condition (1.7). 
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We then use the Cornu inequality [26] 

K [ l V l ] m . ~  llD(v)[Iq,~, m ~ q n , / ( n - -  q) (1.15) 

w i t h  m = 2 and w i t h  a l l o w a n c e  f o r  ( 1 . 5 ) ,  ( 1 . 1 1 )  t o  e v a l u a t e  t he  r i g h t  s i d e  o f  ( 1 . 1 4 )  as  f o l -  
lows:  

I < --  ,5 II .D I!g,;~' + M K - '  11 t' I1~,~ II o 1!~,~, < 
I (__ aIlq/.., + b (t ' "" \*'('-'--q~ ~-~-2 ' --  ', ~j)+ I, 

a = 6(K/V"-AT[) q, b = :  (j~[/'q)q/r (q _ _  l)/q(6q/2)-l(q-O CI. 

( 1 . 1 6 )  

Combining (1.14) and (i.16), we arrive at an ordinary differential inequality for the energy 
function H(t): 

dll/dt + allql~<.~b(t .... ~ql(~ ~) - - ~ ! ' s J +  , II(O)~<MC~. ( 1 . 1 7 )  

Al l  of  t he  n o n ~ e g a t i v e  s o l u t i o n s  o f  i n e q u a l i t y  ( 1 . 1 7 )  a r e  domina ted  by t he  f u n c t i o n  ~ ( t )  = 
Me,(1 - t / T f ) 2 / ( z - q  ) i f  t he  c o n s t a n t s  C n, Of, Tf ,  M, K, q, and 6 s a t i s f y  t he  r e l a t i o n  -2MCv/ 
(2 ~ -  q )Tf  + a(MCv)q ]2 2 b. I n s p e c t i o n  o f  t h e  l a t t e r  c o m p l e t e s  t he  p r o o f  o f  t he  theorem.  

Note i.i. Theorem i.i has the following physical interpretation. The flow of a non- 
Newtonian fluid [with conditions (1.5), (1.9)], initiated by the initial data and body forces 
(the "source"), begins from a state of rest v ~ 0 at the moment of time Tf - the connection 
of the "sources." 

Note 1.2. Theorem i.i can also be formulated in the following manner: for any constant 
C ve (0, ~) in (i.i0) and sufficiently small Cf in (i.ii), there exists Tfe (0, ~) such that 
(1.12) and (1.13) are valid. A similar theorem for f ~ 0 was proven in [ii]. 

Note 1.3. The constant K in inequality (1.15) is independent of ~ if m = 2, q = in/ 
(n + 2), q > I. Thus, in the present case, the above-formulated theorems are also valid for 
the Cauchy problem v(0, x) = v0(x), p(0, x) = p0(x), x e R n for system (1.1)-(1.4). 

Now let us study local properties of the solutions of system (1.1)-(1.4) outside of the 
connection with the boundary conditions. We will restrict ourselves to examining solutions 
of the particular form 

v(t, x).=-: (0, O, ~v(t, x,,  ~ ) ) ,  p(t, x) = t ,  
f(t, x) := (I), O, /(t, x~, x~)), Op/Ox3 = a(t), ( 1 . 1 8 )  

assuming that the pressure gradient a (t) is assigned. This solution can correspond to flow 
in a pipe. Then we write system (1.1)-(1.4) in the form 

0wl0t = div F(V,) -- Op"&r3 F/. 

We assume that the vector Ft(Vw) satisfies the condition 

(i.19) 

6 1 V w F < ~ F ( v w ) v w ~ 6 - 1 1 V t v G  2 < q .  

We introduce the notation Bp(x o) = {x: xe ~, Ix - x0] < p} and, in the region Bpl 
we examine the solution of Eq. (1.19) with the initial condition 

w(O, x) = ~v.(z), ~ ~ .  

It is further assumed that 

( i . 2 o )  

• (0 ,  T ) ,  

( i . i i )  

II U,o I!~,~,, + S II/(~, ")t&~o dT ~ c (t, - po)~" -% 
0 

p ~ (0, p~), 0 < Po < P~, ~ = (3q - -  2 ) 1 4 ( q  - -  t ) ;  

(1 a (t) l + II '~ (t, �9 ) I~,.B,~,) K M .  

( 1 . 2 2 )  

(1.23) 

THEOREM 1,2 (metastable localization). Let w(t, x)~ V a be the generalized solution 
of Eq. (i.i9) in Bpl • (0, T) with initial condition (i.21)/and let conditions (1.20)-(1.23) 

be satisfied. Then there exists t o = t0(M, q, 01, 6)~ (0, T) such that 
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u(t ,z)---  w ( t , x ) +  a( ,)&: = 0 ,  x ~ B p ~ ,  O < t ~ < t  o . 
0 

( 1 . 2 4 )  

Proof. We introduce the energy functions 

I I ( t ,  p) = (u(t, .), u(t, .))B o, b(t, 9) = sup  H('~, p), 

t 

E (t, 9) -~ ~ (F (VU), VU)Bod't, 
o 

( 1 o 2 5 )  

which, as can readily be shown, have the properties 

t 

In accordance with Eq. 

equality 

oA = J (F (w), v.)o,,o d ,>6   nwll ,oB/- , op 
o o (1.26) 

oE = (F, Vu)B~, ~> 6 II VU ilq,~o. Ot 
t 

(i.19), for the function u ( t , x ) = w ( t , z ) + , f a ( ~ ) d L  we obtain the energy 
0 

(]I  (t, [}) - -  ~]~ (0,  p)) -~ g ( t , t )  :-= [1  -~ I 2 '  
'-7- 

t t 

w h e r e  I, == S (F .  n, U)oup dT:; 1,2 = f (/, U)B.o d , : n  is the vector of the normal to ~Bp. 

( 1 . 2 7 )  

In accordance 

with [11-13], the terms in the right side of (1.27) can be evaluated as follows: 

t 
8 '| ~" t 2 1111<. T T b ( t ,  P) + ~ o111(% ")lJ,,Bod'~, a > O ,  

o 
t 

1 1 1 2 1 ~ T  f[iVullqo~oliui!~,oBodT.~e(f __.b)+ ,e'OE ~/~ 
o 

(C == C(T, M ,  q. 6, ~), "7 = 8/(3q - -  1), r162 ---- 3q - -  2/4(q - -  l)) .  

( 1 . 2 8 )  

Combining (1.27) and (1.28), allowing for (1.22), and appropriately choosing e > O, we arrive 
at the final inequality 

E ~ E  + b~atv(OE/Ot)) ~/~ + b ( t , - -  ~1,.(1-~ O0~+ , ( 1 . 2 9 )  

in which a and b depend only on M, q, 6, and T. In accordance with the results in [30, 31], 
for an inequality of the type (1.29) there exists t o > 0 such that E(t, P0) = O, t ~ t ~ t o . 
This completes the proof of the theorem. 

Note 1.4. Thus, if a non-Newtonian fluid [with the law (1.20)] is at rest [w(0, x) = 
u(O, x) = 0] in the region Bo0 at t = 0, then its motion is determined by the following re- 

lation, regardless of the boundary conditions and the "sources" outside Bo0 

t 

~v (t, x) . . . .  f a (~) & ,  0 ~ t < t o, z ~ Boo ̀  
o 

In particular, the state of rest is maintained [w(t, x) = O] at t~ [0, t o ] if there is no 
pressure gradient (a = 0). 

Note i~5. As in the previous case, the energy method can be used to study problem (i.I) 
(1.4) with allowance for the change in the temperature of the medium O(t, x) by adding the 
following equation to the system 

p - y T ~ p  -~+ (vV) O .... d i v A ( t , x ,  ~ , V @ ) +  L(t ,x ,  O,v), 
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Here, it is possible to consider the more general relation F(D, O), as well as nonlinea~r laws 
governing heat conduction and volumetric absorption in the form [11-13] 

5~IOl~lVOI ~ ~< .%VO ~< (1~6,)1~? IvOI *, --I < O, i < • 
L -- --%]Ol~ + Lo(t, x, v), 0~-.~V, 0 < ~ - - ~ 1 . .  

2. Simultaneous Flows of Surface Water and Groundwater. The studies [ii, 23] examined 
mathematical models of the simultaneous no-head flows of surface and subsurface water based 
on equations of plane filtration and the hydraulics of open channels. 

In the simplest case (channel of rectangular cross section and constant width, water- 
confining stratum and channel bottom horizontal, etc.), the corresponding system of equations 
and the internal contact conditions have the form [23] 

a.H_H = d iv (HvH)  + fa (t, .c), ., .~ o F: (2 l) 
Ot " "- " 

Ouot OsO .q" (,% u) ] u. I-1/a--~s,/ -- t t  o,~ jr + /r (l, x), x ~ r ; _  (2 .2)  

OH r_ HNT,~ :==%=(u--H_), x ~ r ,  0 < a _ = = c o n s t .  ( 2 . 3 )  

Here ,  H ( t ,  x) i s  t h e  l e v e l  o f  t h e  g roundwa te r  in t he  r e g i o n  ~ c R2; u ( t ,  s )  i s  t he  l e v e l  o f  
w a t e r  in t h e  c h a n n e l ,  c o r r e s p o n d i n g  to  t he  c u r v e  of  r in ~; s i s  t h e  l e n g t h  of  an a r c  a long  
F; n i s  t he  v e c t o r  o f  t h e  normal  to  F; H i a r e  t he  v a l u e s  of  H in t h e  approach  of  r from d i f -  
f e r e n t  d i r e c t i o n s  ( a c c o r d i n g l y ,  [H] F = H+ - H_);  f ~ ( t ,  x ) ,  F r ( t ,  x )  a r e  a s s i g n e d  e x t e r n a l  
inflows of water - "sources." 

With fF = f~ = 0, the authors of [ii, 23] used the energy method to prove the finite 
velocity of the perturbations for H(t, x), u(t, x) from zero initial data. Below, we prove 
the existence of metastable localization for solutions (2.1)-(2.3). 

We will study the local properties of the solution w= (H(t, x), u(t, x)) of system 
(2.1)-(2.3) in the circle Bp1(x 0) = {x: xe ~, Ix - x0[ < ~}, x 0 e F without restrictions on 
generality, assuming that x 0 = 0, 

r~ = (~: x ~ Q, ~ = o, I x~ I < ~,}, ~ ~ x .  Bi~ -- (~: �9 ~ ~o, o . 5  .~}. 

The existence of the generalized solution w = (H, u) e V was proven for system (2.1)-(2.3) 
in [23] for fundamental initial-boundary-value problems�9 Here, 

v : :  I (H,  . ) :  o<(n, u)<M, V~vH~ L~(0,  T; L - ' ( n < ) ) ,  

g~"alu~l~ La/z(0. T; L "~:'~- (F~,,))I I, ([ln(,['u-a': ')l<~M). 

THEOREM 2.1 (metastable localization). Let ~v = (H, u) e V be the generalized solution 
of system (2.1)-(2.3) in BOI • (0, T) and 

T 

.> + + ! + :-o) <- 
(2.4) 

<~ C (p - -  p o ) $ ( ~ - %  o ~ (0, p0 ,  0 < Oo -<  ,~. a =-= 5/6. 

Then there exists t o = t0(M, C, Pl, T) such that w = (H, u) = 0, xe Bp0 , 0 & t ~ t o . 

Proof. We introduce the notation 

H (t, f,) == 01H ( t ,  ~ ' 'i~ x �9 )I]..,B o+[ tu( t ,  .jl,=,rp), b(t, 9 ) =  sup [I(t,  p), 
O ~ T ~ I  

t 

E (t, p) = .f ( (HVH' vH)% + (% [u, 1o,'~)r0) &, 
0 

t t 

D 2 =  ~" _~(cr-, (u - -  H• F =  ~ ((f.q H)n. + (/r, u)ro)dx. 
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Then the energy equation corresponding to system (2.1)-(2.3) has the form 

+ (II (t, 9) - -  II (0, 9)) + E (t, P) + D2 = 

t 

) xI~O 1 
( 2 . 5 )  

Performing calculations analogous to (1.28), we arrive at an inequality of the type 
(1.29). Analysis of the latter completes the proof of the theorem. 

Note 2.1. Theorem 2.1 has the following physical interpretation. The region Bp0 , not 

occupied by water at the initial moment of time t = 0, remains so at t ~ t o as well, regard- 
less of the boundary conditions and the sources outside Bp0. 

3. Two-Phase Filtration of Immiss Fluids. ' The nonsteady filtration 
of two immiscible incompressible fluids in a nonuniform anisotropic medium is described by 
a system of equations of the composite type [22]: 

m (x) ~ t  = div (K o (x) a (s) V s - -  b (s) v + F (x, s)); ( 3 .  1)  

div v --  0, v = - - (K(x ,  s)Vp -~ f(x, s)), x ~ -Q ~ R '~. ( 3 . 2 )  

Here, the sought functions are the saturation s(t, x) (0 ~ s <_ i), the "corrected" pressure 
p(t, x), and the velocity of the mixture v. The coefficients of system (3.1)-(3.2) are de- 
termined by the formulas 

0 i/ 
a (s) = 1cOl]CO2 O~' (]~ot + ]~o2), b = ]%ilk, 

( 3 . 3 )  
t'" k~176 - k Ko (V~PJ, + (~)2 - -  9~) g), ]~ --  ko~ +/,'o~, 

where Pk is the capillary pressure; ~ik0i are the relative phase permeabilities; Di and Pi 
are the viscosities and densities of the fluids; g is acceleration due to gravity; K 0 is the 
symmetric filtration tensor for a uniform fluid; m is porosity. Depending on the form of 
the functional parameter k01 and Pk, the coefficient a(s) in (3.1) may either vanish or be- 
come infinite at values of s = 0.i - thereby establishing the different character of propaga- 
tion of saturation perturbations s(t, x). For system (3.1)-(3.2), the authors of [22] proved 
the theorem of the existence of the generalized solution w = (s, p)e V, where V = {(s, p): 
0 ~ s ~ i, /-a-x VsE Li(0, T; L=(~)), 7pe L~(0, T; Lq(~))}, n < q ~ =, while the authors of 
[I0, Ii] established a finite localization time s(t, x) [a(0) = ~, s = 0] in the case of a 
boundary-value problem and a finite rate of propagation of perturbations from the initial 
data [s(0, x) = 0 or s(0, x) = i, a(0) = a(1) = 0]. Below, we show that with the additional 
condition for the initial data s(0, x) = s0(x), this solution also has the property of meta- 
stable localization (localization with inertia) at a(0) = 0. 

Let us examine system (3.1)-(3.2) in the region Bpz x (0, T), assuming satisfaction of 
the conditions 

M - 1 ~  m; (L~)  ' 

( [ l . ( a s  ~)]; I F~ls t -= ;  I div~ V ls~; l b~ls-(~+v)/~) ~ M; 

THEOREM 3.1 (metastable localization). Let w = (s, p)e V be the generalized solution 
of metastable system (3.1)-(3.2) and let conditions (3.4)-(3.5) be satisfied. Then there 
exists t o = t0(M , C, ~, q, Pl) > 0 such that 

~(t, x ) =  0, x ~  Boo, 

Proof. We introduce the energy functions 

n (t, t') = ("..," (t,  . ) ,  s (t,  . ) ) , ~ ,  

O ~ t ~ t o .  

f 
E (t, p) : S (K~ VS)Bo d~ 

9 

(3,4) 

(3.5) 

(3.6) 
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and we make use of Eq. (3.1) in the form 

~8 ! r 

m -$i- = div (KoaVS) - -  (b~v + Fs) V s + divx Fo ( 3 . 7 )  

The energy equation corresponding to (3.7) 

l l I ( t , p ) - - I I ( O , p ) + E ( t ,  9) ( ( b '  ' T == ,v + F , ) V  s, s) + div~F, s)Bp + ( K o a v s n ,  s)oBp dT 
0 

similar to the case of Theorems 1.2 and 2.1, leads to an inequality of the form (1.29). Ana- 
lysis of the latter completes the proof of the theorem. 

Note 3.1. A similar theorem is valid for the function s(t, x) = 1 - s(t, x). 

Note 3.2. In the region Bp0 x (0, to) , the corrected pressure satisfies the elliptic 
equation div(K(x, 0)Vp + f (x, 0)) = 0. 

Note 3.3. Theorem 3.1 can give the following physical interpretation. Let the region 
Bp0 be occupied by only one fluid Is(0, x) = 0 or s(0, x) = i] at the initial moment t = O. 

Then for any action outside of Bp0 , the displacement of the given fluid from Bp0 does not 
begin before the moment of time t o > 0. 
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STABILITY OF REGULAR SHOCK WAVE REFLECTION 

V. M. Teshukov UDC 533.6.011 

As is known, the problem of steady supersonic inviscid gas flow around an infinite wedge 
has a nonunique solution [I]. One of the solutions determines the flow with a weak attached 
compression shock, and the other with a strong shock. An analogous nonuniqueness occurs in 
the problem of regular reflection of an oblique compression shock from a rigid wall (strong 
and weak reflected shocks). Stability of the flow with weak and strong reflected shocks rela ' 
tive to small nonstationary perturbations is investigated in this paper. Correctness of the 
problem of the perturbations of the flow with a weak reflected shock and incorrectness of 
the problem of perturbations of the flow with the strong shock are established. This result 
determines the stability boundary of regular shock reflection. Questions of the stability 
of flows with strong and weak shocks have long attracted the attention of researchers [2]. 
Analytic results were obtained earlier just for model simplified formulations of the gas dy- 
namic perturbation problem [3-5]. Assertions about the stability of flows with weak shocks 
and the instability of flows with strong shocks were expressed in [5, 6] in connection with 
an analysis of the results of calculation experiments. 
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